Все люди обладают одним и тем же набором хромосом, в которых расположены схожие гены, отвечающие за продукцию тех или иных белков. Однако, эта «одинаковость» в процессе изучения генома оказалась не полной. В ходе эволюции один и тот же ген у различных особей приобрел мутации. Это привело к тому, что появились полиморфизмы генов (разнообразие).
Полиморфными называют гены, которые представлены в популяции несколькими разновидностями (аллелями), а это, в свою очередь, обусловливает разнообразие признаков внутри вида.
Термин «генетический полиморфизм» обозначает разнообразие частот аллелей. Генетический полиморфизм, фактически происходит в результате замены одного нуклеотида на другой в различных участках генома человека: интронах, экзонах и других участках ДНК. Это определяет огромное число различий генов. В течение жизни человека эти различия могут реализоваться:
1. фенотипически (например, цвет кожи, волос);
2. в проявлении
3. в виде моногенных заболеваний (например: муковисцидоз, синдром Жильбера).
Гены в каждом организме представлены двумя аллелями. Один наследуется от отца, а другой — от матери. В том случае, когда у ребёнка оба аллеля одинаковые, то особь является гомозиготной по этому гену, если аллели
Считается, что различные аллели произошли в результате мутаций от единого
Роль генетики в диагностике заболеваний
В настоящее время благодаря развитию молекулярных методов исследования разработано уже около 200 тестов, позволяющих выявлять наследственные предрасположенности к различным заболеваниям. Следует отметить, что исследования, направленные для выявления предрасположенности к развитию заболеваний, не ставят целью поставить диагноз, они лишь указывают на наличие генов, которые ассоциированы с заболеваниями.
Развитие
«Генетические маркёры» диабета
Показано, что ряд заболеваний может передаваться по наследству, а у части популяции имеются предпосылки для возникновения того или иного заболевания. Были обнаружены гены и их белковые продукты, которые отвечают за развитие таких заболеваний. В лабораторной практике иногда их называют «генетическими маркерами». Изучение таких маркёров дает возможность выделить группы различного риска развития заболеваний, и в частности, диабета. Такой подход может упростить раннюю диагностику заболевания (риск развития заболевания), до проявления основных клинических признаков.
При помощи генетических маркёров можно выявить группы людей с наличием риска развития диабета. Это является важным этапом диагностики диабета, поскольку в сочетании с традиционными методами (определение глюкозы, гликированного гемоглобина, гормонов, выявление аутоантител) приводит к улучшению диагностики заболевания еще до проявления выраженных клинических симптомов заболевания и помогает разработке поведения человека и принятия профилактических мер.
Помимо моногенных наследственных заболеваний, обусловленных мутациями в определенном гене, ответственным за кодирование
Генетика диабета второго типа
Генетические факторы наиболее четко прослеживаются в случае диабета второго типа. Уже обнаружено около 20 генов, полиморфизмы в которых являются факторами риска возникновения диабета второго типа.
Генетическая предрасположенность к диабету носит семейный характер, и часто с сопутствующим ожирением. Ряд обнаруженных полиморфизмов в генах является предрасполагающим фактором риска развития сахарного диабета второго типа. Продукты этих генов (белки) являются регуляторами в обмене глюкозы. В генах закодирована структура белков, опосредовано ответственных за гомеостаз глюкозы. Часть полиморфизмов в этих генах может приводить к нарушению нормального обмена глюкозы. Например, полиморфизм в гене ADAMTS9 приводит к снижению чувствительности периферических тканей к инсулину, а повышенная экспрессия продукта гена TCF7L2 ведет к нарушению толерантности к глюкозе и опосредовано к снижению секреции инсулина. В генах KCNJ11 и KCNQ1 заключена информация о структуре белков, опосредовано участвующих в регуляции секреции инсулина. Нарушение структуры этих белков (вариант 23К гена KCNJ11) приводит к снижению выброса инсулина при повышении концентрации глюкозы.
В оценке возможности развития сахарного диабета определенную роль имеет место изучение полиморфизмов в системе HLA (human leucocyte antigens). Антигены гистосовместимости (
К генам HLA второго класса относятся несколько десятков генов, обнаруженных у человека. Гены HLA II класса расположены на
При исследовании аллелей ряда генов HLA, особенно с частотой встречаемости генов HLA второго класса, обнаружилась взаимосвязь их наличия и повышенного риска возникновения таких заболеваний как сахарный диабет, аутоиммунные заболевания. Было обнаружено, что часть аллельных вариантов генов HLA II класса ассоциированы с повышенным риском развития сахарного диабета первого типа.
К генам HLA II класса, имеющим наибольшее клиническое значение относятся три гена — DQA1, DQB1 и DRB1.
DQA1, DQB1 и DRB1 — так называются гены, кодирующие белки тканевой совместимости II класса — DQ и DR. Многие больные сахарным диабетом являются носителями некоторых аллелей